A data standard for the reuse and reproducibility of any stable isotope probing-derived nucleic acid sequence (MISIP)

Author:

Simpson AbigayleORCID,Wood Charlson Elisha M.ORCID,Smith MontanaORCID,Beilsmith KathleenORCID,Koch Ben,Walls Ramona L.ORCID,Wilhelm Roland C.ORCID

Abstract

AbstractDNA/RNA-stable isotope probing (SIP) is a powerful tool to linkin situmicrobial activity to sequencing data. Every SIP dataset captures distinct information about microbial community metabolism, kinetics, and population dynamics, offering novel insights according to diverse research questions. Data re-use maximizes the information available from the time and resource intensive SIP experimental approach. Yet, a review of publicly available SIP sequencing metadata reveals that critical information necessary for reproducibility and reuse is often missing. Here, we outline the Minimum Information for any Stable Isotope Probing Sequence (MISIP) according to the Minimum Information for any (x) Sequence (MIxS) data standard framework and include examples of MISIP reporting for common SIP approaches. Our objectives are to expand the capacity of MIxS to accommodate SIP-specific metadata and guide SIP users in metadata collection when planning and reporting an experiment. The MISIP standard requires five metadata fields: isotope, isotopolog, isotopolog label and approach, and gradient position, and recommends several fields that represent best practices in acquiring and reporting SIP sequencing data (ex.gradient density and nucleic acid amount). The standard is intended to be used in concert with other MIxS checklists to comprehensively describe the origin of sequence data, such as for marker genes (MISIP-MIMARKS) or metagenomes (MISIP-MIMS), in combination with metadata required by an environmental extension (e.g., soil). The adoption of the proposed data standard will assure the reproducibility and reuse of any sequence derived from a SIP experiment and, by extension, deepen understanding ofin situbiogeochemical processes and microbial ecology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3