Neural population dynamics reveal that motor-targeted intraspinal microstimulation preferentially depresses nociceptive transmission in spinal cord injury-related neuropathic pain

Author:

McPherson Jacob G.ORCID,Bandres Maria F.

Abstract

ABSTRACTThe purpose of this study is to determine whether intraspinal microstimulation (ISMS) intended to enhance voluntary motor output after spinal cord injury (SCI) modulates neural population-level spinal responsiveness to nociceptive sensory feedback. The study was conductedin vivoin three cohorts of rats: neurologically intact, chronic SCI without behavioral signs of neuropathic pain, and chronic SCI with SCI-related neuropathic pain (SCI-NP). Nociceptive sensory feedback was induced by application of graded mechanical pressure to the plantar surface of the hindpaw before, during, and after periods of sub-motor threshold ISMS delivered within the motor pools of the L5 spinal segment. Neural population-level responsiveness to nociceptive feedback was recorded throughout the dorso-ventral extent of the L5 spinal segment using dense multi-channel microelectrode arrays. Whereas motor-targeted ISMS reduced nociceptive transmission across electrodes in neurologically intact animals both during and following stimulation, it was not associated with altered nociceptive transmission in rats with SCI that lacked behavioral signs of neuropathic pain. Surprisingly, nociceptive transmission was reduced both during and following motor-targeted ISMS in rats with SCI-NP, and to an extent comparable to that of neurologically intact animals. The mechanisms underlying the differential anti-nociceptive effects of motor-targeted ISMS are unclear, although they may be related to differences in the intrinsic active membrane properties of spinal neurons across the cohorts. Nevertheless, the results of this study support the notion that it may be possible to purposefully engineer spinal stimulation-based therapies that afford multi-modal rehabilitation benefits, and specifically that it may be possible to do so for the individuals most in need – i.e., those with SCI-related movement impairments and SCI-NP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3