Spinal stimulation for motor rehabilitation immediately modulates nociceptive transmission

Author:

Bandres Maria FORCID,Gomes Jefferson L,McPherson Jacob GORCID

Abstract

Abstract Objective. Spinal cord injury (SCI) often results in debilitating movement impairments and neuropathic pain. Electrical stimulation of spinal neurons holds considerable promise both for enhancing neural transmission in weakened motor pathways and for reducing neural transmission in overactive nociceptive pathways. However, spinal stimulation paradigms currently under development for individuals living with SCI continue overwhelmingly to be developed in the context of motor rehabilitation alone. The objective of this study is to test the hypothesis that motor-targeted spinal stimulation simultaneously modulates spinal nociceptive transmission. Approach. We characterized the neuromodulatory actions of motor-targeted intraspinal microstimulation (ISMS) on the firing dynamics of large populations of discrete nociceptive specific and wide dynamic range (WDR) neurons. Neurons were accessed via dense microelectrode arrays implanted in vivo into lumbar enlargement of rats. Nociceptive and non-nociceptive cutaneous transmission was induced before, during, and after ISMS by mechanically probing the L5 dermatome. Main results. Our primary findings are that (a) sub-motor threshold ISMS delivered to spinal motor pools immediately modulates concurrent nociceptive transmission; (b) the magnitude of anti-nociceptive effects increases with longer durations of ISMS, including robust carryover effects; (c) the majority of all identified nociceptive-specific and WDR neurons exhibit firing rate reductions after only 10 min of ISMS; and (d) ISMS does not increase spinal responsiveness to non-nociceptive cutaneous transmission. These results lead to the conclusion that ISMS parameterized to enhance motor output results in an overall net decrease n spinal nociceptive transmission. Significance. These results suggest that ISMS may hold translational potential for neuropathic pain-related applications and that it may be uniquely suited to delivering multi-modal therapeutic benefits for individuals living with SCI.

Funder

National Institutes of Health

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3