Author:
Yucel Nora,Marchiano Silvia,Tchelepi Evan,Paterlini Germana,McAfee Quentin,Nimmagadda Nehaar,Ren Andy,Shi Sam,Murry Charles,Arany Zoltan
Abstract
AbstractHow SARS-CoV-2 causes the observed range of clinical manifestations and disease severity remains poorly understood. SARS-CoV-2 encodes for two proteases (3CLPro and PLPro), vital for viral production, but also promiscuous with respect to host protein targets, likely contributing to the range of disease. Pharmacological inhibition of the 3C-like3 protease has revealed remarkable reduction in hospitalization and death in phase 2/3 clinical studies. However, the mechanisms responsible for the pathology mediated by those proteases are still unclear. In this study, we develop a bioinformatic algorithm, leveraging experimental data from SARS-CoV, to predict host cleavage targets of the SARS-CoV-2 3C-like protease, or 3CLPro. We capture targets of the 3CL protease described previously for SARS-CoV, and we identify hundreds of new putative targets. We experimentally validate a number of these predicted targets, including the giant sarcomeric protein Obscurin, and show that expression of 3CL protease alone recapitulates the sarcomeric disorganization seen by SARS-CoV-2 infection of hiPSC-derived cardiomyocytes. Our data provide a resource to identify putative host cleavage targets of 3CL protease that contribute to mechanisms and heterogeneity of disease in COVID-19 and future coronavirus outbreaks.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献