Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease

Author:

D′Oliviera Angel,Dai Xuhang,Mottaghinia Saba,Geissler Evan P.,Etienne LucieORCID,Zhang YingkaiORCID,Mugridge Jeffrey S.ORCID

Abstract

AbstractThe SARS-CoV-2 main protease (Mpro) is critical for the production of functional viral proteins during infection and, like many viral proteases, can also target host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 can be recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes global protein synthesis and cellular redox homeostasis. We find that Mprocan cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain required for tRNA modification activity in cells. Evolutionary analysis shows that the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 may be resistant to cleavage. In primates, regions outside the cleavage site with rapid evolution could indicate adaptation to ancient viral pathogens. We determined the structure of a TRMT1 peptide in complex with Mpro, revealing a substrate binding conformation distinct from the majority of available Mpro-peptide complexes. Kinetic parameters for peptide cleavage showed that the TRMT1(526-536) sequence is cleaved with comparable efficiency to the Mpro-targeted nsp8/9 viral cleavage site. Mutagenesis studies and molecular dynamics simulations together indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis that follows substrate binding. Our results provide new information about the structural basis for Mprosubstrate recognition and cleavage that could help inform future therapeutic design and raise the possibility that proteolysis of human TRMT1 during SARS-CoV-2 infection suppresses protein translation and oxidative stress response to impact viral pathogenesis.Significance StatementViral proteases can strategically target human proteins to manipulate host biochemistry during infection. Here, we show that the SARS-CoV-2 main protease (Mpro) can specifically recognize and cleave the human tRNA methyltransferase enzyme TRMT1, which installs a modification on human tRNAs that is critical for protein translation. Our structural and functional analysis of the Mpro-TRMT1 interaction shows how the flexible Mproactive site engages a conserved sequence in TRMT1 in an uncommon binding mode to catalyze its cleavage and inactivation. These studies provide new insights into substrate recognition by SARS-CoV-2 Mprothat could inform future antiviral therapeutic design and suggest that proteolysis of TRMT1 during SARS-CoV-2 infection may disrupt tRNA modification and host translation to impact COVID-19 pathogenesis or phenotypes.

Publisher

Cold Spring Harbor Laboratory

Reference87 articles.

1. G. W. H. Organization, WHO COVID-19 Dashboard. 2023 (2023).

2. C. for S. Science, E. (CSSE) at J. H. University (JHU), COVID-19 Dashboard. 2023 (2023).

3. Public health impact of covid-19 vaccines in the US: observational study;BMJ Online,2022

4. K. Rahmani , et al., The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Front. Public Health 10, 873596 (2022).

5. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3