The two-component system ChvGI maintains cell envelope homeostasis in Caulobacter crescentus

Author:

Quintero-Yanes AlexORCID,Mayard Aurélie,Hallez RégisORCID

Abstract

AbstractTwo-component systems (TCS) are often used by bacteria to rapidly assess and respond to environmental changes. The ChvG/ChvI (ChvGI) TCS conserved in α-proteobacteria is known for regulating expression of genes related to exopolysaccharide production, virulence and growth. The sensor kinase ChvG autophosphorylates upon yet unknown signals and phosphorylates the response regulator ChvI to regulate transcription. Recent studies in Caulobacter crescentus showed that chv mutants are sensitive to vancomycin treatment and fail to grow in synthetic minimal media. In this work, we identified the osmotic imbalance as the main cause of growth impairment in synthetic minimal media. We also determined the ChvI regulon and found that ChvI regulates cell envelope architecture by controlling outer membrane, peptidoglycan assembly/recycling and inner membrane proteins. In addition, we found that ChvI phosphorylation is also activated upon antibiotic treatment with vancomycin. We also challenged chv mutants with other cell envelope related stress and found that treatment with antibiotics targeting transpeptidation of peptidoglycan during cell elongation impairs growth of the mutant. Moreover, these antibiotics activate expression of the chvIG-hprK operon. Finally, we observed that the sensor kinase ChvG relocates from a patchy-spotty distribution to distinctive foci after transition from complex to synthetic minimal media. Interestingly, this pattern of (re)location has been described for proteins involved in cell growth control and peptidoglycan synthesis upon osmotic shock. Overall, our data support that the ChvGI TCS is mainly used to monitor and respond to osmotic imbalances and damages in the peptidoglycan layer to maintain cell envelope homeostasis.ImportanceThe cell envelope is the first barrier protecting cells from harsh environmental conditions, such as temperature, pH, oxidative and osmotic imbalances. It is also an obstacle for the intake of antibiotics targeting essential cellular processes. Therefore, molecular components and systems responding to cell envelope stress and maintaining cell envelope homeostasis are important targets for drug therapy. Here we show that the two-component system ChvGI, highly conserved in free-living and pathogenic α-proteobacteria, is activated upon osmotic upshift and treatment with antibiotics targeting peptidoglycan synthesis to activate the transcription of multiple genes involved in cell envelope homeostasis in Caulobacter crescentus. We also show that the kinase sensor ChvG displays a dynamic localisation pattern that changes depending on osmotic imbalance. To our knowledge this is the first two-component system reported to change his cellular localisation upon environmental stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3