Imaging with spatio-temporal modelling to characterize the dynamics of plant-pathogen lesions

Author:

Leclerc MelenORCID,Jumel Stéphane,Hamelin Frédéric M.ORCID,Treilhaud Rémi,Parisey NicolasORCID,Mammeri YoucefORCID

Abstract

AbstractWithin-host spread of pathogens is an important process for the study of plant-pathogen interactions. However, the development of plant-pathogen lesions remains practically difficult to characterize beyond the common traits such as lesion area. Here, we address this question by combining image-based phenotyping with mathematical modelling.We consider the spread ofPeyronellaea pinodeson pea stipules that were monitored daily with visible imaging. We assume that pathogen propagation on host-tissues can be described by the Fisher-KPP model where lesion spread depends on both a logistic growth and an homogeneous diffusion. Model parameters are estimated using a variational data assimilation approach on sets of registered images.This modelling framework is used to compare the spread of an aggressive isolate on two pea cultivars with contrasted levels of partial resistance. We show that the expected slower spread on the most resistant cultivar is actually due to a decrease of diffusion and, to a lesser extent, growth rate.These results demonstrate that spatial models with imaging allows one to disentangle the processes involved in host-pathogen interactions. Hence, promoting model-based phenotyping of interactions would allow a better identification of quantitative traits thereafter used in genetics and ecological studies.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Real Time Live Imaging of Phytopathogenic Bacteria Xanthomonas campestris pv. campestris MAFF106712 in ‘Plant Sweet Home’

2. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification

3. M. Asch , M. Bocquet , and M. Nodet . Data assimilation: methods, algorithms, and applications. SIAM, 2016.

4. E. Belin , F. Chapeau-Blondeau , and D. Rousseau . Modèle stochastique et représentation par graphe pour le suivi spatio-temporel de pathogènes à la surface de feuilles par imagerie. In 25éme Colloque GRETSI sur le Traitement du Signal et des Images, page 4, 2015.

5. A minimal continuous model for simulating growth and development of plant root systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3