Abstract
ABSTRACTProtein degradation is critical for brain function through processes that remain poorly understood. Here we investigated the in vivo function of a recently reported neuronal membrane-associated proteasome (NMP) in the brain of Xenopus laevis tadpoles. We demonstrated that NMPs are present in the tadpole brain with biochemistry and electron microscopy, and showed that they actively degrade neuronal activity-induced nascent proteins. Using in vivo calcium imaging in the optic tectum, we showed that acute inhibition of NMP function rapidly increased spontaneous neuronal activity, resulting in hyper-synchronization among tectal neurons. At the circuit level, inhibiting NMPs abolished learning-dependent improvement in a visuomotor behavior paradigm in live animals. Our data provide the first in vivo characterization of NMP functions in the vertebrate nervous system and suggest that NMP-mediated degradation of activity-induced nascent proteins may serve as a homeostatic modulatory mechanism in neurons that is critical for regulating neuronal activity and experience-dependent circuit plasticity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献