Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein

Author:

Fernandes Maria Fernanda,Chan John Zewen,Hung Chia Chun Joey,Tomczewski Michelle Victoria,Duncan Robin ElaineORCID

Abstract

AbstractAimsTo study effects on cellular innate immune responses to novel genes ORF8 and ORF10, and the more conserved Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, either alone, or in combination with cannabidiol (CBD).Main MethodsHEK293 cells were transfected with a control plasmid, or plasmids expressing ORF8, ORF10, or M protein, and assayed for cell number and markers of apoptosis at 24 h, and expression of interferon and interferon-stimulated genes at 14 h.Key findingsA significant reduction in cell number, and increase in early and late apoptosis, was found after 24 h in cells where expression of viral genes was combined with 1-2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. CBD (2 μM) augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2’-5’-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL, in cells expressing ORF8, ORF10, and M protein. CBD also augmented expression of these genes in control cells not expressing viral genes, without enhancing apoptosis.SignificanceOur results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but suggest an augmented innate anti-viral response to these genes in the presence of CBD. Furthermore, our results indicate that CBD may prime components of the innate immune system, increasing readiness to respond to viral infection without activating apoptosis, and therefore could be studied for potential in prophylaxis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3