Cell morphological profiling enables high-throughput screening for PROteolysis TArgeting Chimera (PROTAC) phenotypic signature

Author:

Trapotsi Maria-Anna,Mouchet Elizabeth,Williams Guy,Monteverde Tiziana,Juhani Karolina,Turkki Riku,Miljković Filip,Martinsson Anton,Mervin Lewis,Müllers Erik,Barrett Ian,Engkvist Ola,Bender Andreas,Moreau Kevin

Abstract

SummaryPROTACs (PROteolysis TArgeting Chimeras) use the ubiquitin-proteasome system to degrade a protein of interest for therapeutic benefit. Advances in targeted protein degradation technology have been remarkable with several molecules moving into clinical studies. However, robust routes to assess and better understand the safety risks of PROTACs need to be identified, which is an essential step towards delivering efficacious and safe compounds to patients. In this work, we used Cell Painting, an unbiased high content imaging method, to identify phenotypic signatures of PROTACs. Chemical clustering and model prediction allowed the identification of a mitotoxicity signature that could not be expected by screening the individual PROTAC components. The data highlighted the benefit of unbiased phenotypic methods for identifying toxic signatures and the potential to impact drug design.HighlightsMorphological profiling detects various PROTACs’ phenotypic signaturesPhenotypic signatures can be attributed to diverse biological responsesChemical clustering from phenotypic signatures separates on drug selectionTrained in-silico machine learning models to predict PROTACs’ mitochondrial toxicity

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Bergstra, J. , Yamins, D. , and Cox, D. (2013). Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. 28, 115–123.

2. Hyperopt: a Python library for model selection and hyperparameter optimization;Comput. Sci. Discov.,2015

3. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

4. Therapeutic Approaches Targeting Nucleolus in Cancer;Cells 2019,2019

5. Chen, T. , and Guestrin, C. XGBoost: A Scalable Tree Boosting System.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3