Reexamining Waddington: Canalization and new mutations are not required for the evolution of genetic assimilation

Author:

Marzec Sarah Ruth,Pelletier Katharine,Chang Amy Hui-Pin,Dworkin IanORCID

Abstract

AbstractOver 65 years ago, Waddington demonstrated ancestrally phenotypically plastic traits can evolve to become constitutive, a process he termed genetic assimilation. Genetic assimilation evolves rapidly, assumed to be in large part due to segregating genetic variation only expressed in rare/novel environments, but otherwise phenotypically cryptic. Despite previous work suggesting a substantial role of cryptic genetic variation contributing to the evolution of genetic assimilation, some have argued for a prominent role for new mutations of large effect concurrent with selection. Interestingly, Waddington was less concerned by the relative contribution of CGV or new variants, but aimed to test the role of canalization, an evolved form of robustness. While canalization has been extensively studied, its role in the evolution of genetic assimilation is disputed, in part because explicit tests of evolved robustness are lacking. To address these questions, we recreated Waddington’s selection experiments on an environmentally sensitive change in Drosophila wing morphology (crossvein development), using many independently evolved replicate lineages. Using these, we show that 1) a polygenic CGV, but not new variants of large effect are largely responsible for the evolved response demonstrated using both genomic and genetic approaches. 2) Using both environmental manipulations and mutagenesis of the evolved lineages that there is no evidence for evolved changes in canalization contributing to genetic assimilation. Finally, we demonstrate that 3) CGV has potentially pleiotropic and fitness consequences in natural populations and may not be entirely “cryptic”.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A theoretical perspective on Waddington’s genetic assimilation experiments;Proceedings of the National Academy of Sciences;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3