A theoretical perspective on Waddington’s genetic assimilation experiments

Author:

Raju Archishman1,Xue BingKan2ORCID,Leibler Stanislas34

Affiliation:

1. Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India

2. Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL 32611

3. The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540

4. Laboratory of Living Matter, The Rockefeller University, New York, NY 01065

Abstract

Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington’s original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington’s picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon—Waddington’s, expressed in terms of an individual organism’s developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3