Abstract
AbstractCytoplasmic dynein is essential for intracellular transport, but because of its complexity, we still do not fully understand how this 1.5 megadalton protein works. Here, we used novel optical probes that enable single-particle tracking (SPT) of individual cargos transported by dynein motors in live neurons over 900μm. Analyses using the Fluctuation Theorem (FT) showed that the number of dynein molecules switches between 1-5 motors during the transport. Clearly resolved single-molecular steps revealed that the dwell times between individual steps were accurately described by an enzymatic cycle dominated by two equal and thermally-activated rate constants. Based on these data, we propose a new molecular model whereby each step requires the hydrolysis of 2 ATPs. The model is consistent with extensive structural, single-molecule and biochemical measurements.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献