Generation and characterisation of P. falciparum parasites with a G358S mutation in the PfATP4 Na+ pump and clinically relevant levels of resistance to some PfATP4 inhibitors

Author:

Qiu Deyun,Pei Jinxin V.,Rosling James E. O.,Li Dongdi,Xue Yi,Penington Jocelyn Sietsma,Kümpornsin Krittikorn,Vincent Aw Yi Tong,Han Aw Jessica Yi,Hasemer Heath,Dennis Adelaide S. M.,Ridgway Melanie C.,Papenfuss Anthony T.,Lee Marcus C. S.,van Dooren Giel G.,Kirk Kiaran,Lehane Adele M.

Abstract

AbstractSmall-molecule inhibitors of PfATP4, a Plasmodium falciparum protein that is believed to pump Na+ out of the parasite while importing H+, are on track to become much-needed new antimalarial drugs. The spiroindolone cipargamin is poised to become the first PfATP4 inhibitor to reach the field, having performed strongly in Phase 1 and 2 clinical trials. Previous attempts to generate cipargamin-resistant parasites in the laboratory have yielded parasites with reduced susceptibility to the drug; however, the highest 50% inhibitory concentration reported to date is 24 nM. Here, we show that P. falciparum parasites can acquire a clinically-significant level of resistance to cipargamin that enables them to withstand micromolar concentrations of the drug. Independent experiments to generate high-level cipargamin resistance using different protocols and strains led to the same change each time – a G358S mutation in PfATP4. Parasites with this mutation showed high-level resistance not only to cipargamin, but also to the dihydroisoquinolone (+)-SJ733. However, for certain other (less clinically advanced) PfATP4-associated compounds the G358S mutation in PfATP4 conferred only moderate resistance or no resistance. The G358S mutation in PfATP4 did not affect parasite susceptibility to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in the Toxoplasma gondii ATP4 homologue (G419S), decreased the sensitivity of the Na+-ATPase activity of ATP4 to inhibition by cipargamin and (+)-SJ733, and decreased the sensitivity of parasites expressing these ATP4 mutations to disruption of parasite Na+ regulation by cipargamin- and (+)-SJ733. The G358S mutation in PfATP4 reduced the affinity of the protein for Na+ and was associated with an increase in the parasite’s resting cytosolic Na+ concentration; however, no significant defect in parasite growth rate was observed. Our findings suggest that codon 358 in pfatp4 should be monitored closely in the field as a molecular marker for cipargamin resistance, and that PfATP4 inhibitors in clinical development should be tested for their activity against PfATP4G358S parasites.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3