Projecting the seasonality of endemic COVID-19

Author:

Townsend Jeffrey P.ORCID,Lamb April D.ORCID,Hassler Hayley B.ORCID,Sah PrathaORCID,Nishio Aia Alvarez,Nguyen Cameron,Tew Alexandra D.,Galvani Alison P.ORCID,Dornburg AlexORCID

Abstract

AbstractImportanceSuccessive waves of infection by SARS-CoV-2 have left little doubt that COVID-19 will transition to an endemic disease, yet the future seasonality of COVID-19 remains one of its most consequential unknowns. Foreknowledge of spatiotemporal surges would have immediate and long-term consequences for medical and public health decision-making.ObjectiveTo estimate the impending endemic seasonality of COVID-19 in temperate population centers via a phylogenetic ancestral and descendent states approach that leverages long-term data on the incidence of circulating coronaviruses.DesignWe performed a comparative evolutionary analysis on literature-based monthly verified cases of HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43 infection within populations across the Northern Hemisphere. Ancestral and descendent states analyses on human-infecting coronaviruses provided projections of the impending seasonality of endemic COVID-19.SettingQuantitative projections of the endemic seasonality of COVID-19 were based on human endemic coronavirus infection incidence data from New York City (USA); Denver (USA); Tampere (Finland); Trøndelag (Norway); Gothenburg (Sweden); Stockholm (Sweden); Amsterdam (Netherlands); Beijing (China); South Korea (Nationwide); Yamagata (Japan); Hong Kong; Nakon Si Thammarat (Thailand); Guangzhou (China); and Sarlahi (Nepal).Main Outcome(s) and Measure(s)The primary projection was the monthly relative frequency of SARS-CoV-2 infections in each geographic locale. Four secondary outcomes consisted of empirical monthly relative frequencies of the endemic human-infecting coronaviruses HCoV-NL63, -229E, -HKU1, and -OC43.ResultsWe project asynchronous surges of SARS-CoV-2 across locales in the Northern Hemisphere. In New York City, SARS-CoV-2 incidence is projected in late fall and winter months (Nov.–Jan.), In Tampere, Finland; Yamagata, Japan; and Sarlahi, Nepal incidence peaks in February. Gothenburg and Stockholm in Sweden reach peak incidence between November and February. Guangzhou, China; and South Korea. In Denver, incidence peaks in early Spring (Mar.). In Amsterdam, incidence rises in late fall (Dec.), and declines in late spring (Apr.). In Hong Kong, the projected apex of infection is in late fall (Nov.–Dec.), yet variation in incidence is muted across other seasons. Seasonal projections for Nakhon Si Thammarat, Thailand and for Beijing, China are muted compared to other locations.Conclusions and RelevanceThis knowledge of likely spatiotemporal surges of COVID-19 is fundamental to medical preparedness and expansions of public health interventions that anticipate the impending endemicity of this disease and mitigate COVID-19 transmission. These results provide crucial guidance for adaptive public health responses to this disease, and are vital to the long-term mitigation of COVID-19 transmission.Key PointsQuestionUnder endemic conditions, what are the projected spatiotemporal seasonal surges of COVID-19?FindingsWe applied a phylogenetic ancestral and descendent states approach, leveraging long-term data on the incidence of circulating coronaviruses. We found that seasonal surges are expected in or near the winter months; dependent on the specific population center, infections are forecasted to surge in the late fall, winter, or early spring.MeaningGlobally, endemic COVID-19 surges should be expected to occur asynchronously, often coincident with local expected surges of other human-infecting respiratory viruses.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Geographic Information Systems and COVID-19: The Johns Hopkins University Dashboard

2. Inferring the effectiveness of government interventions against COVID-19

3. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study;Lancet Infect Dis,2022

4. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period

5. World Health Organization. Coronavirus disease (COVID-19): situation report, 148. Published online June 16, 2020. Accessed February 21, 2022. https://apps.who.int/iris/handle/10665/332551

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3