A global scale COVID-19 variants time-series analysis across 48 countries

Author:

Chu Rachel Yui Ki,Szeto Kam Chiu,Wong Irene Oi Ling,Chung Pui Hong

Abstract

BackgroundThe coronavirus disease (COVID-19) pandemic is slowing down, and countries are discussing whether preventive measures have remained effective or not. This study aimed to investigate a particular property of the trend of COVID-19 that existed and if its variants of concern were cointegrated, determining its possible transformation into an endemic.MethodsBiweekly expected new cases by variants of COVID-19 for 48 countries from 02 May 2020 to 29 August 2022 were acquired from the GISAID database. While the case series was tested for homoscedasticity with the Breusch–Pagan test, seasonal decomposition was used to obtain a trend component of the biweekly global new case series. The percentage change of trend was then tested for zero-mean symmetry with the one-sample Wilcoxon signed rank test and zero-mean stationarity with the augmented Dickey–Fuller test to confirm a random COVID trend globally. Vector error correction models with the same seasonal adjustment were regressed to obtain a variant-cointegrated series for each country. They were tested by the augmented Dickey–Fuller test for stationarity to confirm a constant long-term stochastic intervariant interaction within the country.ResultsThe trend series of seasonality-adjusted global COVID-19 new cases was found to be heteroscedastic (p = 0.002), while its rate of change was indeterministic (p = 0.052) and stationary (p = 0.024). Seasonal cointegration relationships between expected new case series by variants were found in 37 out of 48 countries (p < 0.05), reflecting a constant long-term stochastic trend in new case numbers contributed from different variants of concern within most countries.ConclusionOur results indicated that the new case long-term trends were random on a global scale and stable within most countries; therefore, the virus was unlikely to be eliminated but containable. Policymakers are currently in the process of adapting to the transformation of the pandemic into an endemic.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3