Transgenerational transcriptional heterogeneity from cytoplasmic chromatin

Author:

Papathanasiou StamatisORCID,Mynhier Nikos A.,Liu Shiwei,Jacob Etai,Stokasimov Ema,van Steensel BasORCID,Zhang Cheng-ZhongORCID,Pellman David

Abstract

Transcriptional heterogeneity from plasticity of the epigenetic state of chromatin is thought to contribute to tumor evolution, metastasis, and drug resistance 1–3. However, the mechanisms leading to nongenetic cell-to-cell variation in gene expression remain poorly understood. Here we demonstrate that heritable transcriptional changes can result from the formation of micronuclei, aberrations of the nucleus that are common in cancer4,5. Micronuclei have fragile nuclear envelopes (NE) that are prone to spontaneous rupture, which exposes chromosomes to the cytoplasm and disrupts many nuclear activities 6,7. Using a combination of long-term live-cell imaging and same-cell, single-cell RNA sequencing (Look-Seq2), we identified significant reduction of gene expression in micronuclei, both before and after NE rupture. Furthermore, chromosomes in micronuclei fail to normally recover histone 3 lysine 27 acetylation, a critical step for the reestablishment of normal transcription after mitosis 8–10. These transcription and chromatin defects can persist into the next generation in a subset of cells, even after these chromosomes are incorporated into normal daughter nuclei. Moreover, persistent transcriptional repression is strongly associated with, and may be explained by, surprisingly long-lived DNA damage to these reincorporated chromosomes. Therefore, heritable alterations in transcription can originate from aberrations of nuclear architecture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3