scFeatures: Multi-view representations of single-cell and spatial data for disease outcome prediction

Author:

Cao YueORCID,Lin YingxinORCID,Patrick EllisORCID,Yang PengyiORCID,Yang Jean Yee HwaORCID

Abstract

AbstractRecent advances in single-cell technologies enable scientists to measure molecular data at high-resolutions and hold the promise to substantially improve clinical outcomes through personalised medicine. However, due to a lack of tools specifically designed to represent each sample (e.g. patient) from the collection of cells sequenced, disease outcome prediction on the sample level remains a challenging task. Here, we present scFeatures, a tool that creates interpretable molecular representation of single-cell and spatial data using 17 types of features motivated by current literature. The feature types span across six distinct categories including cell type proportions, cell type specific gene expressions, cell type specific pathway scores, cell type specific cell–cell interaction scores, overall aggregated gene expressions and spatial metrics. By generating molecular representation using scFeatures for single-cell RNA-seq, spatial proteomic and spatial transcriptomic data, we demonstrate that different types of features are important for predicting different disease outcomes in different datasets and the downstream analysis of features uncover novel biological discoveries.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3