Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data

Author:

Cao YueORCID,Ghazanfar ShilaORCID,Yang PengyiORCID,Yang JeanORCID

Abstract

AbstractThe advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in large-scale patient cohort studies. The resulting high-dimensional data can be summarised and incorporated into patient outcome prediction models in several ways, however, there is a pressing need to understand the impact of analytical decisions on such model quality. In this study, we evaluate the impact of analytical choices on model choices, ensemble learning strategies and integration approaches on patient outcome prediction using five scRNA-seq COVID-19 datasets. First, we examine the difference in performance between using each single-view feature space versus multi-view feature space. Next, we survey multiple learning platforms from classical machine learning to modern deep learning methods. Lastly, we compare different integration approaches when combining datasets is necessary. Through benchmarking such analytical combinations, our study highlights the power of ensemble learning, consistency among different learning methods and robustness to dataset normalisation when using multiple datasets as the model input.Summary key pointsThis work assesses and compares the performance of three categories of workflow consisting of 350 analytical combinations for outcome prediction using multi-sample, multi-conditions single-cell studies.We observed that using ensemble of feature types performs better than using individual feature typeWe found that in the current data, all learning approaches including deep learning exhibit similar predictive performance. When combining multiple datasets as the input, our study found that integrating multiple datasets at the cell level performs similarly to simply concatenating the patient representation without modification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3