Targeting against HIV/HCV Co-infection using Machine Learning-based multitarget-quantitative structure-activity relationships (mt-QSAR) Methods

Author:

Wei Yu,Li Wei,Du Tengfei,Hong Zhangyong,Lin Jianping

Abstract

ABSTRACTCo-infection between HIV-1 and HCV is common today in certain populations. However, treatment of co-infection is full of challenges with special consideration for potential hepatic safety and drug-drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV co-infection. However, identification of one molecule acting on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining naive Bayesian (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints (MACCS and ECFP6), 60 classification models were constructed to predict the active compounds toward 11 HIV-1 targets and 4 HCV targets based on the multitarget-quantitative structure-activity relationships (mt-QSAR). 5-fold cross-validation and test set validation was performed to confirm the performance of 60 classification models. Our results show that 60 mt-QSAR models appeared to have high classification accuracy in terms of ROC-AUC values ranging from 0.83 to 1 with a mean value of 0.97 for HIV-1 models, and ROC-AUC values ranging from 0.84 to 1 with a mean value of 0.96 for HCV. Furthermore, the 60 models were applied to comprehensively predict the potential targets for additional 46 compounds including 27 approved HIV-1 drugs, 10 approved HCV drugs and 9 selected compounds known to be active on one or more targets of HIV-1 or those of HCV. Finally, 18 hits including 7 HIV-1 approved drugs, 4 HCV approved drugs and 7 compounds were predicted to be HIV/HCV co-infection multitarget inhibitors. The reported bioactivity data confirmed that 7 compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. Of those remaining predicted hits and chemical-protein interaction pairs involving the potential ability to suppress HIV/HCV co-infection deserve further investigation by experiments. This investigation shows that the mt-QSAR method is available to predict chemical-protein interaction for discovering multitarget inhibitors and provide a unique perspective on HIV/HCV co-infection treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3