Author:
Andersen Mikael R.,Salazar Margarita P.,Schaap Peter J.,van de Vondervoort Peter J.I.,Culley David,Thykaer Jette,Frisvad Jens C.,Nielsen Kristian F.,Albang Richard,Albermann Kaj,Berka Randy M.,Braus Gerhard H.,Braus-Stromeyer Susanna A.,Corrochano Luis M.,Dai Ziyu,van Dijck Piet W.M.,Hofmann Gerald,Lasure Linda L.,Magnuson Jon K.,Menke Hildegard,Meijer Martin,Meijer Susan L.,Nielsen Jakob B.,Nielsen Michael L.,van Ooyen Albert J.J.,Pel Herman J.,Poulsen Lars,Samson Rob A.,Stam Hein,Tsang Adrian,van den Brink Johannes M.,Atkins Alex,Aerts Andrea,Shapiro Harris,Pangilinan Jasmyn,Salamov Asaf,Lou Yigong,Lindquist Erika,Lucas Susan,Grimwood Jane,Grigoriev Igor V.,Kubicek Christian P.,Martinez Diego,van Peij Noël N.M.E.,Roubos Johannes A.,Nielsen Jens,Baker Scott E.
Abstract
The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics