Effector Gene Reshuffling Involves Dispensable Mini-chromosomes in the Wheat Blast Fungus

Author:

Peng ZhaoORCID,Garcia Ely OliveiraORCID,Lin Guifang,Hu Ying,Dalby Melinda,Migeon Pierre,Tang Haibao,Farman Mark,Cook David,White Frank F.,Valent BarbaraORCID,Liu SanzhenORCID

Abstract

AbstractNewly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. To understand genetic diversity in wheat-infecting strains, we report a near-finished reference genome of a recent field isolate generated using long read sequencing and a novel scaffolding approach with long-distance paired genomic sequences. The genome assemblage includes seven core chromosomes and sequences from a dispensable mini-chromosome that harbors effector genes normally found on the ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and two mini-chromosomes from another field isolate each contain different effector homologous genes and core chromosome end sequences. The mini-chromosome is highly repetitive and is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and non-dispensable core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.Significance statementThe emerging blast disease on wheat is proving even harder to control than the ancient, still-problematic rice blast disease. Potential wheat resistance identified using strains isolated soon after disease emergence are no longer effective in controlling recent aggressive field isolates from wheat in South America and South Asia. We report that recent wheat pathogens can contain one or two highly-variable conditionally-dispensable mini-chromosomes, each with an amalgamation of effector sequences that are duplicated or absent from pathogen core chromosome ends. Well-studied effectors found on different core chromosomes in rice pathogens appear side-by-side in wheat pathogen mini-chromosomes. The rice pathogen often overcomes deployed resistance genes by deleting triggering effector genes. Localization of effectors on mini-chromosomes, which are unstably transmitted during growth, would accelerate pathogen adaptation in the field.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3