Cellular Dynamics and Genomic Identity of Centromeres in the Cereal Blast Fungus

Author:

Yadav VikasORCID,Yang Fan,Reza Md. Hashim,Liu SanzhenORCID,Valent BarbaraORCID,Sanyal KaustuvORCID,Naqvi Naweed I.ORCID

Abstract

AbstractA series of well-synchronized events mediated by kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres scaffold kinetochore assembly and are among the fastest evolving chromosomal loci in terms of the DNA sequence, length, and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus, Magnaporthe oryzae. High-resolution confocal imaging of GFP-tagged inner kinetochore proteins, CenpA and CenpC, revealed an unusual albeit transient declustering of centromeres just before anaphase separation in M. oryzae. Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se. Using chromatin immunoprecipitation followed by deep sequencing, all seven centromeres were identified as CenpA-rich regions in the wild-type Guy11 strain of M. oryzae. The centromeres in M. oryzae are regional and span 57 to 109 kb transcriptionally poor regions. No centromere-specific DNA sequence motif or repetitive elements could be identified in these regions suggesting an epigenetic specification of centromere function in M. oryzae. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast fungus. PacBio genome assemblies and synteny analyses facilitated comparison of the centromere regions in distinct isolate(s) of rice blast, wheat blast, and in M. poae. Overall, this study identified unusual centromere dynamics and precisely mapped the centromere DNA sequences in the top model fungal pathogens that belong to the Magnaporthales and cause severe losses to global production of food crops and turf grasses.Author summaryMagnaporthe oryzae is an important fungal pathogen that causes an annual loss of 10-30% of the rice crop due to the devastating blast disease. In most organisms, kinetochores are arranged either in the metaphase plate or are clustered together to facilitate synchronized anaphase separation of chromosomes. In this study, we show that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae. Centromeres, identified as the site of kinetochore assembly, are regional type without any shared sequence motifs in M. oryzae. Together, this study reveals atypical kinetochore dynamics and identifies functional centromeres in M. oryzae, thus paving the way to define heterochromatin boundaries and understand the process of kinetochore assembly on epigenetically specified centromere loci in the economically important cereal blast and summer patch pathogens. This study paves the way for understanding the contribution of heterochromatin in genome stability and virulence of the blast fungus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3