Dual-energy X-ray absorptiometry derived knee shape may provide a useful imaging biomarker for predicting total knee replacement: findings from a study of 37,843 people in UK Biobank

Author:

Beynon Rhona AORCID,Saunders Fiona RORCID,Ebsim RajaORCID,Frysz MonikaORCID,Faber Benjamin GORCID,Gregory Jennifer SORCID,Lindner ClaudiaORCID,Sarmanova AliyaORCID,Aspden Richard MORCID,Harvey Nicholas C,Cootes TimothyORCID,Tobias Jonathan HORCID

Abstract

AbstractObjectiveWe developed a novel imaging biomarker derived from knee dual-energy x-ray absorptiometry (DXA) to predict subsequent total knee replacement (TKR). The biomarker is based on knee shape, determined through statistical shape modelling. It was developed and evaluated using data and scans from the UK Biobank cohort.MethodsUsing a 129-point statistical shape model (SSM), knee shape (B-score) and minimum joint space width (mJSW) of the medial joint compartment (binarized as above or below the first quartile) were derived. Osteophytes were manually graded in a subset of DXA images. Cox proportional hazards models were used to examine the associations of B-score, mJSW and osteophyte score with the risk of TKR, adjusted for age, sex, height and weight.ResultsThe analysis included 37,843 individuals (mean 63.7 years). In adjusted models, B-score and mJSW were associated with TKR: a standard deviation increase in B-score was associated with a hazard ratio (HR) of 2.32 (2.13, 2.54), and a lower mJSW with a HR of 2.21 (1.76, 2.76). In the 6,719 images scored for osteophytes, mJSW was replaced by osteophyte score in the most strongly predictive model for TKR. In subsequent ROC analyses, a model combining B-score, osteophyte score, and demographic variables had superior discrimination (AUC=0.87) in predicting TKR at five years compared with a model with demographic variables alone (AUC=0.73).ConclusionsAn imaging biomarker derived from knee DXA scans reflecting knee shape and osteophytes, in conjunction with demographic factors, could help identify those at high risk of TKR, in whom preventative strategies should be targeted.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3