Moth resonant mechanics are tuned to wingbeat frequency and energetic demands

Author:

Wold Ethan S.,Aiello Brett,Harris Manon,Sikandar Usama Bin,Lynch James,Gravish NickORCID,Sponberg SimonORCID

Abstract

AbstractAn insect’s wingbeat frequency is a critical determinant of its flight performance and varies by multiple orders of magnitude across Insecta. Despite potential energetic and kine-matic benefits for an insect that matches its wingbeat frequency to its resonant frequency, recent work has shown that moths may operate off of their resonant peak. We hypothesized that across species, wingbeat frequency scales with resonance frequency to maintain favorable energetics, but with an offset in species that use frequency modulation as a means of flight control. The moth superfamily Bombycoidea is ideal for testing this hypothesis because their wingbeat frequencies vary across species by an order of magnitude, despite similar morphology and actuation. We used materials testing, high-speed videography, and a “spring-wing” model of resonant aerodynamics to determine how components of an insect’s flight apparatus (thoracic properties, wing inertia, muscle strain, and aerodynamics) vary with wingbeat frequency. We find that the resonant frequency of a moth correlates with wingbeat frequency, but resonance curve shape (described by the Weis-Fogh number) and peak location vary within the clade in a way that corresponds to frequency-dependent biomechanical demands. Our results demonstrate that a suite of adaptations in muscle, exoskeleton and wing drive variation in resonant mechanics, reflecting potential constraints on matching wingbeat and resonant frequencies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moth resonant mechanics are tuned to wingbeat frequency and energetic demands;Proceedings of the Royal Society B: Biological Sciences;2024-06

2. The Weis-Fogh Number Describes Resonant Performance Tradeoffs in Flapping Insects;Integrative And Comparative Biology;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3