Microglia promote extracellular matrix deposition and restrict excitatory synapse numbers in the mesolimbic dopamine system during healthy aging

Author:

Gray Daniel T.ORCID,Guitierrez Abigail,Jami-Alahmadi Yasaman,Pandey Vijaya,Pan Lin,Zhang Ye,Wohlschlegel James A.,De Biase Lindsay M.

Abstract

AbstractSynapse dysfunction has been definitively linked to cognitive impairments in the aging brain, and microglial physiology has emerged as a robust regulator of synapse status and cognitive aging outcomes. Hippocampal microglia have recently been shown to regulate synapse function via targeted remodeling of the extracellular matrix (ECM), yet the degree to which microglia-ECM interactions impact synapse function in the healthy aged brain remains virtually unexplored. This study combines high-resolution imaging and ECM-optimized tissue proteomics to examine the impact that microglial physiology has on ECM and synapse status in the basal ganglia of healthy aging mice. Our results demonstrate that deposition of the ubiquitous ECM scaffold hyaluronan increases during aging in the ventral tegmental area (VTA), but not its downstream target, the nucleus accumbens, and that VTA microglial tissue coverage correlates with local hyaluronan deposition. Proteomic mapping of core matrisome proteins showed prominent regional differences in ECM composition across basal ganglia nuclei that were significantly associated with abundance of chemokine receptors and synapse proteins. Finally, manipulation of microglial fractalkine signaling through Cx3Cr1 receptor deletion reversed age-associated ECM accumulation within the VTA and resulted in abnormally elevated synapse numbers in this brain region by middle age. These findings indicate that microglia promote age-related increases in ECM deposition in some, but not all, brain regions that may restrict local excitatory synapse numbers. This microglial function could represent an adaptive response to brain aging that helps to maintain appropriate activity patterns within basal ganglia circuits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3