Epigenetic heterogeneity shapes the transcriptional landscape of regional microglia

Author:

Margetts Alexander V.,Vilca Samara J.,Bourgain-Guglielmetti Florence,Tuesta Luis M.

Abstract

AbstractMicroglia, the innate immune cells in the central nervous system, exhibit distinct transcriptional profiles across brain regions that are important for facilitating their specialized function. There has been recent interest in identifying the epigenetic modifications associated with these distinct transcriptional profiles, as these may improve our understanding of the underlying mechanisms governing the functional specialization of microglia. One obstacle to achieving this goal is the large number of microglia required to obtain a genome-wide profile for a single histone modification. Given the cellular and regional heterogeneity of the brain, this would require pooling many samples which would impede biological applications that are limited by numbers of available animals. To overcome this obstacle, we have adapted a method of chromatin profiling known as Cleavage Under Targets and Tagmentation (CUT&Tag-Direct) to profile histone modifications associated with regional differences in gene expression throughout the brain reward system. Consistent with previous studies, we find that transcriptional profiles of microglia vary by brain region. However, here we report that these regional differences also exhibit transcriptional network signatures specific to each region. Additionally, we find that these region-dependent network signatures are associated with differential deposition of H3K27ac and H3K7me3, and while the H3K27me3 landscape is remarkably stable across brain regions, the H3K27ac landscape is most consistent with the anatomical location of microglia which explain their distinct transcriptional profiles. Altogether, these findings underscore the established role of H3K27me3 in cell fate determination and support the active role of H3K27ac in the dynamic regulation of microglial gene expression. In this study, we report a molecular and computational framework that can be applied to improve our understanding of the role of epigenetic regulation in microglia in both health and disease, using as few as 2,500 cells per histone mark.Figure 1.Pipeline of tissue processing and data analysis for the characterization of the microglial transcriptome and epigenome on a regional scale.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3