A deep-learning strategy to identify cell types across species from high-density extracellular recordings

Author:

Beau MaximeORCID,Herzfeld David J.ORCID,Naveros FranciscoORCID,Hemelt Marie E.ORCID,D’Agostino FedericoORCID,Oostland MarliesORCID,Sánchez-López AlvaroORCID,Chung Young Yoon,Maibach MichaelORCID,Kyranakis StephenORCID,Stabb Hannah N.ORCID,Martínez Lopera M. Gabriela,Lajko AgostonORCID,Zedler MarieORCID,Ohmae ShogoORCID,Hall Nathan J.ORCID,Clark Beverley A.ORCID,Cohen DanaORCID,Lisberger Stephen G.ORCID,Kostadinov DimitarORCID,Hull CourtORCID,Häusser MichaelORCID,Medina Javier F.ORCID

Abstract

AbstractHigh-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don’t reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers. We train a semi-supervised deep-learning classifier that predicts cell types with greater than 95% accuracy based on waveform, discharge statistics, and layer of the recorded neuron. The classifier’s predictions agree with expert classification on recordings using different probes, in different laboratories, from functionally distinct cerebellar regions, and across animal species. Our classifier extends the power of modern dynamical systems analyses by revealing the unique contributions of simultaneously-recorded cell types during behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3