Golgi cells regulate timing and variability of information transfer in a cerebellar-behavioural loop

Author:

Palacios Ensor RafaelORCID,Houghton ConorORCID,Chadderton PaulORCID

Abstract

ABSTRACTGolgi cells are inhibitory interneurons residing in the input layer of the cerebellar cortex. These neurons sit in a key position to govern the transformation of incoming information from extracerebellar regions and influence downstream cerebellar processing. Here, we examine the contribution of Golgi cells to network dynamics in Crus 1 of mouse lateral cerebellar cortex during free whisking. We recorded neuronal population activity using NeuroPixels probes before and after chemogenetic downregulation of Golgi cell activity. Under resting conditions, cerebellar population activity reliably encoded whisker movements. Reductions in Golgi cell activity produced mild increases in neural activity which did not significantly impair these sensorimotor representations. However, reduced Golgi cell inhibition did increase the temporal alignment of local population network activity at the initiation of movement. These network alterations had variable impacts on behaviour, producing both increases and decreases in whisking velocity. Our results suggest that Golgi cell inhibition primarily governs the temporal patterning of population activity, which in turn is required to support downstream cerebellar dynamics and behavioural coordination.SIGNIFICANCE STATEMENTThe cerebellum is known to have a simple and highly conserved structure which has tantalised neurobiologists wishing to understand its function. Here we look at the role of one specific class of inhibitory interneuron, Golgi cells, in the input layer of the cerebellar cortex. We selectively turned down Golgi cell activity in the awake cerebellum to characterise the influence on network activity and behaviour. Here we show that downregulation of Golgi cells has very little influence on sensorimotor representations in the cerebellum (i.e.,whatis represented), but instead modulates the timing of cortical population activity (i.e.,wheninformation is represented). Our results indicate that Golgi cells are necessary to appropriately pace changes in cerebellar activity to match ongoing behaviour.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3