CGRP inhibits SARS-CoV-2 infection of bronchial epithelial cells and its pulmonary levels correlate with viral clearance in critical COVID-19 patients

Author:

Barbosa Bomfim Caio César,Genin Hugo,Cottoignies-Callamarte Andréa,Gallois-Montbrun Sarah,Murigneux Emilie,Sams Anette,Rosenberg Arielle R,Belouzard Sandrine,Dubuisson Jean,Kosminder Olivier,Pène Frédéric,Terrier Benjamin,Bomsel Morgane,Ganor Yonatan

Abstract

AbstractUpon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with critical coronavirus disease 2019 (COVID-19) present with life-threatening respiratory distress, pulmonary damage and cytokine storm. One unexplored hub in COVID-19 is the neuropeptide calcitonin gene-related peptide (CGRP), which is highly abundant in the airways and could converge in multiple aspects of COVID-19-related pulmonary pathophysiology. Whether CGRP affects SARS-CoV-2 infection directly remains elusive. We show that in critical COVID-19 patients, CGRP is increased in both plasma and lungs. Importantly, CGRP pulmonary levels are elevated in early SARS-CoV-2-positive patients, and restore to baseline upon subsequent viral clearance in SARS-CoV-2-negative patients. We further show that CGRP and its stable analogue SAX directly inhibit infection of bronchial Calu-3 epithelial cells with SARS-CoV-2 Omicron and Alpha variants in a dose-dependent manner. Both pre- and post-infection treatment with GRRP and/or SAX is enough to block SARS-CoV-2 productive infection of Calu3 cells. CGRP-mediated inhibition occurs via activation of the CGRP receptor and involves down-regulation of SARS-CoV-2 entry receptors at the surface of Calu-3 cells. Together, we propose that increased pulmonary CGRP mediates beneficial viral clearance in critical COVID-19 patients, by directly inhibiting SARS-CoV-2 infection. Hence, CGRP-based interventions could be harnessed for management of COVID-19.Brief summaryPulmonary levels of the neuropeptide CGRP are increased in critical COVID-19 patients, and could clear virus by directly inhibiting SRAS-CoV-2 infection of bronchial epithelia cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3