Pseudo-spectral angle mapping for automated pixel-level analysis of highly multiplexed tissue image data

Author:

Durkee Madeleine S.ORCID,Ai Junting,Casella Gabriel,Cao Thao,Chang Anthony,Halper-Stromberg Ariel,Jabri Bana,Clark Marcus R.,Giger Maryellen L.

Abstract

AbstractThe rapid development of highly multiplexed microscopy systems has enabled the study of cells embedded within their native tissue, which is providing exciting insights into the spatial features of human disease [1]. However, computational methods for analyzing these high-content images are still emerging, and there is a need for more robust and generalizable tools for evaluating the cellular constituents and underlying stroma captured by high-plex imaging [2]. To address this need, we have adapted spectral angle mapping – an algorithm used widely in hyperspectral image analysis – to compress the channel dimension of high-plex immunofluorescence images. As many high-plex immunofluorescence imaging experiments probe unique sets of protein markers, existing cell and pixel classification models do not typically generalize well. Pseudospectral angle mapping (pSAM) uses reference pseudospectra – or pixel vectors – to assign each pixel in an image a similarity score to several cell class reference vectors, which are defined by each unique staining panel. Here, we demonstrate that the class maps provided by pSAM can directly provide insight into the prevalence of each class defined by reference pseudospectra. In a dataset of high-plex images of colon biopsies from patients with gut autoimmune conditions, sixteen pSAM class representation maps were combined with instance segmentation of cells to provide cell class predictions. Finally, pSAM detected a diverse set of structure and immune cells when applied to a novel dataset of kidney biopsies imaged with a 43-marker panel. In summary, pSAM provides a powerful and readily generalizable method for evaluating high-plex immunofluorescence image data.Significance StatementUnderstanding the cellular constituents captured by highly multiplexed tissue imaging is a major limitation affecting the usability of these novel imaging methods. Many imaging experiments have uniquely designed staining panels, reducing the generalizability of cell classification models to new datasets. We present pseudospectral angle mapping (pSAM), which can compress high-dimensional image data into class representations. We demonstrate that the class representations generated by pSAM can be used to interpret high-plex image data and guide cell classification. Importantly, we also demonstrate that pSAM can generalize to new image datasets—collected with a different staining panel in samples from different tissues—without manual image annotation, subjective intensity gating, or re-training an algorithm.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3