Haplotype phased genome of ‘Fairchild’ mandarin highlights influence of local chromatin state on gene expression

Author:

Diaz Isaac A.,Ostovar Talieh,Chen Jinfeng,Saddoris Sarah,Schmitz Robert J.,Wessler Susan R.,Stajich Jason,Seymour Danelle K.

Abstract

AbstractBackgroundCis-regulatory sequences control gene expression through the coordinated action of transcription factors and their associated partners. Both genetic and epigenetic perturbation of cis-regulatory sequences can lead to novel patterns of gene expression. Phased genome assemblies now enable the local dissection of linkages between cis-regulatory sequences, including their epigenetic state, and gene expression to further characterize gene regulation in heterozygous genomes.ResultsWe assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to explore the molecular signatures of allele-specific gene expression. With genome phasing, genes with allele-specific expression were paired with haplotype-specific chromatin states, including levels of chromatin accessibility, histone modifications, and DNA methylation. We found that 30% of variation in allele-specific expression could be attributed to haplotype associated factors, with allelic levels of chromatin accessibility and three histone modifications in gene bodies having the most influence. Structural variants in promoter regions were also associated with allele-specific expression, including specific enrichments of hAT and MULE-MuDR DNA transposon sequences. Mining of cis-regulatory sequences underlying regions with allelic variation in chromatin accessibility revealed a paternally-associated sequence motif bound by ERF48, a target of the Polycomb repressive complex 2 (PRC2), and sequence similarity of this motif corresponded to local levels of H3K27me3, a signature of PRC2 activity.ConclusionsUsing a locally phased assembly of a heterozygous citrus cultivar, we dissected the interplay between genetic variants and molecular phenotypes with the goal of revealing functional cis-regulatory sequences and exploring the evolution of gene regulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3