DeepResBat: deep residual batch harmonization accounting for covariate distribution differences

Author:

An LijunORCID,Zhang ChenORCID,Wulan NarenORCID,Zhang ShaoshiORCID,Chen PanshengORCID,Ji FangORCID,Ng Kwun KeiORCID,Chen ChristopherORCID,Zhou Juan HelenORCID,Yeo B.T. ThomasORCID, ,

Abstract

AbstractPooling MRI data from multiple datasets requires harmonization to reduce undesired inter-site variabilities, while preserving effects of biological variables (or covariates). The popular harmonization approach ComBat uses a mixed effect regression framework that explicitly accounts for covariate distribution differences across datasets. There is also significant interest in developing harmonization approaches based on deep neural networks (DNNs), such as conditional variational autoencoder (cVAE). However, current DNN approaches do not explicitly account for covariate distribution differences across datasets. Here, we provide mathematical results, suggesting that not accounting for covariates can lead to suboptimal harmonization. We propose two DNN-based covariate-aware harmonization approaches: covariate VAE (coVAE) and DeepResBat. The coVAE approach is a natural extension of cVAE by concatenating covariates and site information with site- and covariate-invariant latent representations. DeepResBat adopts a residual framework inspired by ComBat. DeepResBat first removes the effects of covariates with nonlinear regression trees, followed by eliminating site differences with cVAE. Finally, covariate effects are added back to the harmonized residuals. Using three datasets from three continents with a total of 2787 participants and 10085 anatomical T1 scans, we find that DeepResBat and coVAE outperformed ComBat, CovBat and cVAE in terms of removing dataset differences, while enhancing biological effects of interest. However, coVAE hallucinates spurious associations between anatomical MRI and covariates even when no association exists. Future studies proposing DNN-based harmonization approaches should be aware of this false positive pitfall. Overall, our results suggest that DeepResBat is an effective deep learning alternative to ComBat. Code for DeepResBat can be found here:https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/harmonization/An2024_DeepResBat.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3