Physiological JNK3 Concentrations Are Higher in Motor-related and Disease-implicated Brain Regions of C57BL6/J Mice

Author:

Godieva Victoria,Sammoura Ferass,Verrier Paz Sebastian,Han Yoonhee,Di Guida Valentina,Rishel Michael J.,Richardson Jason R.,Chambers Jeremy W.

Abstract

AbstractThe c-Jun N-terminal kinase 3 (JNK3) is a stress-responsive protein kinase primarily expressed in the central nervous system (CNS). JNK3 exhibits nuanced neurological activities, such as roles in behavior, circadian rhythms, and neurotransmission, but JNK3 is also implicated in cell death and neurodegeneration. Despite the critical role of JNK3 in neurophysiology and pathology, its localization in the brain is not fully understood due to a paucity of tools to distinguish JNK3 from other isoforms. While previous functional and histological studies suggest locales for JNK3 in the CNS, a comprehensive and higher resolution of JNK3 distribution and abundance remained elusive. Here, we sought to define the anatomical and cellular distribution of JNK3 in adult mouse brains. Data reveal the highest levels of JNK3 and pJNK3 were found in the cortex and the hippocampus. JNK3 possessed neuron-type selectivity as JNK3 was present in GABAergic, cholinergic, and dopaminergic neurons, but was not detectable in VGLUT-1-positive glutamatergic neurons and astrocytesin vivo. Intriguingly, higher JNK3 signals were found in motor neurons and relevant nuclei in the cortex, basal ganglia, brainstem, and spinal cord. While JNK3 was primarily observed in the cytosol of neurons in the cortex and the hippocampus, JNK3 appeared commonly within the nucleus in the brainstem. These distinctions suggest the potential for significant differences between JNK3 actions in distinct brain regions and cell types. Our results provide a significant improvement over previous reports of JNK3 spatial organization in the adult CNS and support continued investigation of JNK3’s role in neurophysiology and pathophysiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3