Abstract
AbstractBackgroundSuccessful vaccination against the H1N1 Influenza A virus has required the continuous development of new vaccines that are antigenically similar to currently circulating strains. Vaccine strategies that can increase the cross-reactivity of the antibody response, especially to conserved regions, are essential to creating long-lasting immunity to H1N1 viruses. How pre-existing immunity affects vaccine-induced antibody cross-reactivity is still not well understood.MethodsAn immunological shape space of antigenic sites of hemagglutinin (HA) was constructed using viral sequence data. A Gillespie Algorithm-based model of the humoral immune system was used to simulate B cell responses to A/California/07/2009 (CA09) HA antigen after prior immunization with an antigenically similar or dissimilar strain. The effect of pre-existing memory B cells and antibody on the resulting antibody responses was interrogated.ResultsWe found increased levels of highly-cross-reactive antibodies after immunization with antigenically dissimilar strains. This increase was dependent on pre-existing memory B cells. Furthermore, pre-existing antibody also interfered with the cross-reactive antibody response, but this effect occurred irrespective of the priming antigen.ConclusionThese findings suggest that vaccination by divergent strains will boost highly-cross-reactive antibodies by selectively targeting memory B cells specific to conserved antigenic sites and by reducing the negative interference caused by pre-existing antibody.
Publisher
Cold Spring Harbor Laboratory