Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window

Author:

Cras-Méneur Corentin,Li Lin,Kopan Raphael,Permutt M. Alan

Abstract

Canonical Notch signaling is thought to control the endocrine/exocrine decision in early pancreatic progenitors. Later, RBP-Jκ interacts with Ptf1a and E12 to promote acinar differentiation. To examine the involvement of Notch signaling in selecting specific endocrine lineages, we deregulated this pathway by targeted deletion of presenilin1 and presenilin2, the catalytic core of γ-secretase, in Ngn3- or Pax6-expressing endocrine progenitors. Surprisingly, whereas Pax6+ progenitors were irreversibly committed to the endocrine fate, we discovered that Ngn3+ progenitors were bipotential in vivo and in vitro. When presenilin amounts are limiting, Ngn3+ progenitors default to an acinar fate; subsequently, they expand rapidly to form the bulk of the exocrine pancreas. γ-Secretase inhibitors confirmed that enzymatic activity was required to block acinar fate selection by Ngn3 progenitors. Genetic interactions identified Notch2 as the substrate, and suggest that γ-secretase and Notch2 act in a noncanonical titration mechanism to sequester RBP-Jκ away from Ptf1a, thus securing selection of the endocrine fate by Ngn3 progenitors. These results revise the current view of pancreatic cell fate hierarchy, establish that Ngn3 is not in itself sufficient to commit cells to the endocrine fate in the presence of Ptf1a, reveal a noncanonical action for Notch2 protein in endocrine cell fate selection, and demonstrate that acquisition of an endocrine fate by Ngn3+ progenitors is γ-secretase-dependent until Pax6 expression begins.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3