Author:
Marsolier-Kergoat Marie-Claude,Khan Md Muntaz,Schott Jonathan,Zhu Xuan,Llorente Bertrand
Abstract
ABSTRACTMeiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here we revisit these models by analyzing meiotic heteroduplex DNA tracts genome-wide in combination with meiotic DNA double-strand break (DSB) locations. We provide unprecedented support to the synthesis-dependent strand annealing model and establish estimates of its associated template switching frequency and polymerase processivity. We show that resolution of double Holliday junctions (dHJs) is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions. The suspected dHJ resolvase Mlh1-3 as well as Mlh1-2, Exo1 and Sgs1 promote asymmetric positioning of crossover intermediates relative to the initiating DSB and bidirectional conversions. Finally, we show that crossover-biased dHJ resolution depends on Mlh1-3, Exo1, Msh5 and to a lesser extent on Sgs1. These properties are likely conserved in eukaryotes containing the ZMM proteins, which includes mammals.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献