Decomposing neural circuit function into information processing primitives

Author:

Voges NicoleORCID,Hausmann Johannes,Brovelli AndreaORCID,Battaglia DemianORCID

Abstract

ABSTRACTCognitive functions arise from the coordinated activity of neural populations distributed over large-scale brain networks. However, it is challenging to understand and measure how specific aspects of neural dynamics translate into operations of information processing, and, ultimately, cognitive functions. An obstacle is that simple circuit mechanisms–such as self-sustained or propagating activity and nonlinear summation of inputs–do not directly give rise to high-level functions. Nevertheless, they already implement simple transformations of the information carried by neural activity.Here, we propose that distinct neural circuit functions, such as stimulus representation, working memory, or selective attention stem from different combinations and types of low-level manipulations of information, or information processing primitives. To test this hypothesis, we combine approaches from information theory with computational simulations of canonical neural circuits involving one or more interacting brain regions that emulate well-defined cognitive functions. More specifically, we track the dynamics of information emergent from dynamic patterns of neural activity, using suitable quantitative metrics to detect where and when information is actively buffered (“active information storage”), transferred (“information transfer”) or non-linearly merged (“information modification”), as possible modes of low-level processing. We find that neuronal subsets maintaining representations in working memory or performing attention-related gain modulation are signaled by their boosted involvement in operations of active information storage or information modification, respectively.Thus, information dynamics metrics, beyond detectingwhichnetwork units participate in cognitive processing, also promise to specifyhow and whenthey do it, i.e., through which type of primitive computation, a capability that may be exploited for the parsing of actual experimental recordings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3