Perturbed Information Processing Complexity in Experimental Epilepsy

Author:

Clawson WesleyORCID,Waked Benjamin,Madec Tanguy,Ghestem Antoine,Quilichini Pascale P.ORCID,Battaglia Demian,Bernard Christophe

Abstract

Comorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we test the hypothesis that primitive processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex in experimental epilepsy in adult, male Wistar rats. We find that information storage and sharing are organized into substates across the stereotypic states of slow and theta oscillations in both epilepsy and control conditions. However, their internal composition and organization through time are disrupted in epilepsy, partially losing brain state selectivity compared with controls, and shifting toward a regimen of disorder. We propose that the alteration of information processing at this algorithmic level of computation, the theoretical intermediate level between structure and function, may be a mechanism behind the emergent and widespread comorbidities associated with epilepsy, and perhaps other disorders.SIGNIFICANCE STATEMENTComorbidities, such as cognitive deficits, which often accompany epilepsies, constitute a basal state, while seizures are rare and transient events. This suggests that neural dynamics, in particular those supporting cognitive function, are altered in a permanent manner in epilepsy. Here, we show that basic processes of information processing at the core of cognitive function (i.e., storage and sharing of information) are altered in the hippocampus and the entorhinal cortex (two regions involved in memory processes) in experimental epilepsy. Such disruption of information processing at the algorithmic level itself could underlie the general performance impairments in epilepsy.

Funder

EU Marie Curie

Agence Nationale de la Recherche

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3