Genetic Architecture of Heart Mitochondrial Proteome influencing Cardiac Hypertrophy

Author:

Krishnan Karthickeyan ChellaORCID,El Hachem Elie-JulienORCID,Carroll Luke,Vegas Alexis Diaz,Light Christine,Cao Yang,Pan Calvin,Kaczor-Urbanowicz Karolina Elżbieta,Shravah Varun,Anum Diana,Pellegrini Matteo,Lee Chi Fung,Seldin Marcus M.ORCID,Parker Benjamin L.,James David E.ORCID,Lusis Aldons J.

Abstract

ABSTRACTMitochondria play a key role in the normal function of the heart as well as in the pathogenesis of diseases. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteomic analysis in the HMDP (72 strains, n=2-3 mice) and retrieved 840 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their respective abundance levels identified three trans-acting genetic loci, located on chromosome (chr) 7, chr13 and chr17, that control distinct classes of mitochondrial proteins as well as heart hypertrophy. Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Variations of all three were associated with heart mass in two independent heart stress models, namely, isoproterenol (ISO)-induced heart failure and diet-induced obesity (DIO) models. To identify the aspects of mitochondrial metabolism regulated by these loci, we constructed co-expression protein networks using weighted gene co-expression network analysis (WGCNA). DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P = 2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P = 3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P = 6.9E-05). These results indicate that common variations of certain mitochondrial proteins can act in trans to influence mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3