The Chromosome-based Genome of Paspalum vaginatum Provides New Insights into Salt-stress Adaptation

Author:

Liao Li,Hu XuORCID,Hao Jiangshan,Tang Minqiang,Ren Longzhou,Pan Ling,Xie Shangqian,Raymer Paul,Qi Peng,Chen Zhenbang,Wang Zhiyong,Luo Jie

Abstract

AbstractSalinization is increasingly a major factor limiting production worldwide. Revealing the mechanism of salt tolerance could help to create salt-tolerant crops and improve their yields. We reported a chromosome-scale genome sequence of the halophyte turfgrass Paspalum vaginatum, and provided structural evidence that it shared a common ancestor with Z. mays and S. bicolor. A total of 107 P. vaginatum germplasms were divided into two groups (China and foreign group) based on the re-sequenced data, and the grouping findings were consistent with the geographical origin. Genome-wide association study (GWAS) of visually scored wilting degree and withering rates identified highly significant QTL on chromosome 6. Combination with RNA-seq, we identified a significantly up-regulated gene under salt stress, which encodes ‘High-affinity K+ Transporter 7’ (PvHKT7), as strong candidates underlying the QTL. Overexpression of this gene in Arabidopsis thaliana significantly enhanced salt tolerance by increasing K+ absorption. This study adds new insights into salt-stress adaptation of P. vaginatum and serve as a resource for salt-tolerant improvement of grain crops.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3