Genome-Wide Identification and Expression Analysis of Calmodulin-Like Gene Family in Paspalums vaginatium Revealed Their Role in Response to Salt and Cold Stress

Author:

Yang Meizhen1,Chen Jingjin1,Liu Tingting1,Xiang Leilei1,Zhou Biao-Feng2

Affiliation:

1. Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

The calmodulin-like (CML) family is an important calcium (Ca2+) sensor in plants and plays a pivotal role in the response to abiotic and biotic stresses. As one of the most salt-tolerant grass species, Paspalums vaginatum is resistant to multiple abiotic stresses, such as salt, cold, and drought. However, investigations of PvCML proteins in P. vaginatum have been limited. Based on the recently published P. vaginatum genome, we identified forty-nine PvCMLs and performed a comprehensive bioinformatics analysis of PvCMLs. The main results showed that the PvCMLs were unevenly distributed on all chromosomes and that the expansion of PvCMLs was shaped by tandem and segmental duplications. In addition, cis-acting element analysis, expression profiles, and qRT–PCR analysis revealed that PvCMLs were involved in the response to salt and cold stress. Most interestingly, we found evidence of a tandem gene cluster that independently evolved in P. vaginatum and may participate in cold resistance. In summary, our work provides important insight into how grass species are resistant to abiotic stresses such as salt and cold and could be the basis of further gene function research on CMLs in P. vaginatum.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3