Direction mutation pressure of SARS-CoV-2 helps to understand the past and predict the future evolution: C>U and G>U biased mutagenesis forces the majority of amino-acid substitutions to be from CG-rich losers to U-rich gainers

Author:

Voronka Alexandr,Efimenko BogdanORCID,Oreshkov Sergey,Franco Melissa,Fleischmann Zoe,Yurov Valerian,Trufanova Arina,Timonina Valeria,Ree Natalia,Zalevsky Arthur,Penfrat Emma,Junier ThomasORCID,Agranovsky Alexey,Khrapko Konstantin,Gunbin Konstantin,Fellay JacquesORCID,Popadin Konstantin

Abstract

AbstractEvolution is a function of mutagenesis and selection. To analyse the role of mutagenesis on the structure of the SARS-CoV-2 genome, we reconstructed the mutational spectrum, which was highly C>U and G>U biased. This bias forces the SARS-CoV-2 genome to become increasingly U-rich unless selection cancels it. We analysed the consequences of this bias on the composition of the most neutral (four-fold degenerate synonymous substitutions) and the least neutral positions (nonsynonymous substitutions). The neutral nucleotide composition is already highly saturated by U and, according to our model, it is at equilibrium, suggesting that in the future, we don’t expect any more increase in U. However, nonsynonymous changes continue slowly evolve towards equilibrium substituting CG-rich amino-acids (“losers”) with U-rich ones (“gainers”). This process is universal for all genes of SARS-CoV-2 as well as for other coronaviridae species. In line with the direction mutation pressure hypothesis, we show that viral-specific amino acid content is associated with the viral-specific mutational spectrum due to the accumulation of effectively neutral slightly deleterious variants (losers to gainers) during the molecular evolution. The tuning of a protein space by the mutational process is expected to be typical for species with relaxed purifying selection, suggesting that the purging of slightly-deleterious variants in the SARS-CoV-2 population is not very effective, probably due to the fast expansion of the viral population during the pandemic. Understanding the mutational process can help to design more robust vaccines, based on gainer-rich motifs, close to the mutation-selection equilibrium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3