Defining a Nonribosomal Specificity Code for Design

Author:

Stanišić Aleksa,Svensson Carl-MagnusORCID,Ettelt Ulrich,Kries HajoORCID

Abstract

AbstractNonribosomal peptide synthetases (NRPSs) assemble bioactive peptides from an enormous repertoire of building blocks. How binding pocket residues of the nonribosomal adenylation domain, the so-called specificity code, determine which building block becomes incorporated has been a landmark discovery in NRPS enzymology. While specificity codes enable the prediction of substrate specificity from protein sequence, design strategies based on rewriting the specificity code have been limited in scope. An important reason for failed NRPS design has been that multispecificity has not been considered, for a lack of suitable assay formats. Here, we employ a multiplexed hydroxamate specificity assay (HAMA) to determine substrate profiles for mutant libraries of A-domain in the termination module the SrfAC of surfactin synthetase. A generalist version of SrfAC is developed and the functional flexibility of the adenylation reaction is probed by fully randomizing 15 residues in and around the active site. We identify mutations with profound impact on substrate selectivity and thus reveal a remarkable evolvability of A-domains. Statistical analysis of the specificity divergence caused by point mutations has determined the impact of each code position on specificity, which will serve as a roadmap for NRPS engineering. The shortness of evolutionary pathways between NRPS specificities explains the rich natural substrate scope and suggests directed evolution guided by A-domain promiscuity as a promising strategy.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3