Detecting frequency-dependent selection through the effects of genotype similarity on fitness components

Author:

Sato YasuhiroORCID,Takahashi YumaORCID,Xu Chongmeng,Shimizu Kentaro K.ORCID

Abstract

AbstractFrequency-dependent selection (FDS) drives an evolutionary regime that maintains or disrupts polymorphisms. Despite the increasing feasibility of genetic association studies on fitness components, there are a few methods to uncover the loci underlying FDS. Based on a simplified model of pairwise genotype–genotype interactions, we propose a linear regression that can infer FDS from observed fitness. The key idea behind our method is the inclusion of genotype similarity as a pseudo-trait in selection gradient analysis. Single-locus analysis of Arabidopsis and damselfly data could detect known negative FDS on visible polymorphism that followed Mendelian inheritance with complete dominance. By extending the singlelocus analysis to genome-wide association study (GWAS), our simulations showed that the regression coefficient of genotype similarity can distinguish negative or positive FDS without confounding other forms of balancing selection. Field GWAS of the branch number further revealed that negative FDS, rather than positive FDS, was enriched among the top-scoring single nucleotide polymorphisms (SNPs) in Arabidopsis thaliana. These results showed the wide applicability of our method for FDS on both visible polymorphism and genome-wide SNPs. Our study provides an effective method for selection gradient analysis to understand the maintenance or loss of polymorphism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3