Models of General Frequency-Dependent Selection and Mating-Interaction Effects and the Analysis of Selection Patterns in Drosophila Inversion Polymorphisms

Author:

Álvarez-Castro José M12,Alvarez Gonzalo1

Affiliation:

1. Department of Genetics, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain

2. Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, D-82152 Planegg-Martinsried, Germany

Abstract

Abstract We investigate mechanisms of balancing selection by extending two deterministic models of selection in a one-locus two-allele genetic system to allow for frequency-dependent fitnesses. Specifically we extend models of constant selection to allow for general frequency-dependent fitness functions for sex-dependent viabilities and multiplicative fertilities, while non-multiplicative mating-dependent components remain constant. We compute protected polymorphism conditions that take the form of harmonic means involving both the frequency- and the mating-dependent parameters. This allows for a direct comparison of the equilibrium properties of the frequency-dependent models with those of the constant models and for an analysis of equilibrium of the general model of constant fertility. We then apply the theory to analyze the maintenance of inversion polymorphisms in Drosophila subobscura and D. pseudoobscura, for which data on empirical fitness component estimates are available in the literature. Regression on fitness estimates obtained at different starting frequencies enables us to implement explicit fitness functions in the models and therefore to perform complete studies of equilibrium and stability for particular sets of data. The results point to frequency dependence of fitness components as the main mechanism responsible for the maintenance of the inversion polymorphisms considered, particularly in relation to heterosis, although we also discuss the contribution of other selection mechanisms.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3