Frataxin deficiency disrupts mitochondrial respiration and pulmonary endothelial cell function

Author:

Culley Miranda K.,Mehta Monica,Zhao Jingsi,Perk Dror,Tai Yi Yin,Tang Ying,Shiva Sruti,Rabinovitch Marlene,Gu Mingxia,Bertero Thomas,Chan Stephen Y.ORCID

Abstract

AbstractDeficiency of iron-sulfur (Fe-S) clusters promotes metabolic rewiring of the endothelium and the development of pulmonary hypertension (PH) in vivo. Joining a growing number of Fe-S biogenesis proteins critical to pulmonary endothelial function, recent data highlighted that frataxin (FXN) reduction drives Fe-S-dependent genotoxic stress and senescence across multiple types of pulmonary vascular disease. Trinucleotide repeat mutations in the FXN gene cause Friedreich’s ataxia, a disease characterized by cardiomyopathy and neurodegeneration. These tissue-specific phenotypes have historically been attributed to mitochondrial reprogramming and oxidative stress. Whether FXN coordinates both nuclear and mitochondrial processes in the endothelium is unknown. Here, we aim to identify the mitochondria-specific effects of FXN deficiency in the endothelium that predispose to pulmonary hypertension. Our data highlight an Fe-S-driven metabolic shift separate from previously described replication stress whereby FXN knockdown diminished mitochondrial respiration and increased glycolysis and oxidative species production. In turn, FXN-deficient endothelial cells exhibited a vasoconstrictive phenotype consistent with PH. These data were observed in both primary pulmonary endothelial cells after pharmacologic inhibition of FXN and inducible pluripotent stem cell-derived endothelial cells from patients with FXN mutations. Altogether, this study defines FXN as a shared upstream driver of pathologic aberrations in both metabolism and genomic stability. Moreover, our study highlights FXN-specific vasoconstriction, suggesting available and future therapies may be beneficial and targeted for PH subtypes with FXN deficiency.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3