A modelling assessment of short- and medium-term risks of programme interruptions for gambiense human African trypanosomiasis in the DRC

Author:

Huang Ching-IORCID,Crump Ronald E,Crowley Emily H,Hope Andrew,Bessell Paul R,Shampa Chansy,Miaka Erick Mwamba,Rock Kat SORCID

Abstract

AbstractGambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving elimination of transmission. We used a previously developed model of gHAT fitted to data from the Democratic Republic of Congo, a country with the highest global case burden, to explore how interruptions to intervention activities, due to e.g. COVID-19, Ebola or political instability, could impact progress towards EoT and gHAT burden. We simulated transmission and reporting dynamics in 38 health zones under six interruption scenarios lasting for nine or twenty-one months. Included in the interruption scenarios are the cessation of active screening in all scenarios and a reduction in passive detection rates and a delay or suspension of vector control deployments in some scenarios. Our results indicate that, even under the most extreme 21-month interruption scenario, EoT is not predicted to be delayed by more than one additional year compared to the length of the interruption. If existing vector control deployments continue, we predict no delay in achieving EoT even when both active and passive screening activities are interrupted. If passive screening remains fully functional, we expect a marginal negative impact on transmission, however this depends on the strength of passive screening in each health zone. We predict a pronounced increase in additional gHAT disease burden (morbidity and mortality) in many health zones if both active and passive screening were interrupted compared to the interruption of active screening alone. The ability to continue existing vector control during medical activity interruption is also predicted to avert a moderate proportion of disease burden.Author SummaryWhilst the COVID-19 pandemic has produced wide-spread disruption for many disease programmes there are also a range of other factors that continue to risk programme interruptions including other disease outbreaks (e.g. Ebola, cholera, yellow fever, and measles) and the potential for political instability. In this study we examine the impact of interruptions by external factors to the gambiense human African trypanosomiasis (gHAT, sleeping sickness) elimination programme of the Democratic Republic of the Congo, a country which has the highest global case burden. We use our previously fitted gHAT model to simulate how transmission dynamics might be impacted by disruption to medical interventions and (where relevant) vector control activities in 38 health zones of the former Bandundu province. For each of the six interruption scenarios we use the model to forecast case numbers and disease burden as well as estimating the expected years and probabilities of elimination of transmission. This analysis provides invaluable insight into the impact that interruptions of any persuasion could have on burden, case reporting and time to achieve elimination of transmission of gHAT in the Democratic Republic of the Congo.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Things must not fall apart: the ripple effects of the COVID-19 pandemic on children in sub-Saharan Africa;Pediatric Research,2021

2. The global impact of the COVID-19 pandemic on the prevention, diagnosis and treatment of hepatitis B virus (HBV) infection

3. The impact of COVID-19 on TB: a review of the data;The International Journal of Tuberculosis and Lung Disease,2021

4. Predicted impact of COVID-19 on neglected tropical disease programs and the opportunity for innovation;Clinical Infectious Diseases,2021

5. Health Ministry of the Democratic Republic of the Congo. Health Ministry of the Democratic Republic of the Congo; 2022. Available from: https://www.minisanterdc.cd/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3