Genome-wide quantification of RNA flow across subcellular compartments reveals determinants of the mammalian transcript life cycle

Author:

Smalec Brendan M.,Ietswaart Robert,Choquet Karine,McShane Erik,West Emma R.,Churchman L. Stirling

Abstract

AbstractDissecting the myriad regulatory mechanisms controlling eukaryotic transcripts from production to degradation requires quantitative measurements of mRNA flow across the cell. We developed subcellular TimeLapse-seq to measure the rates at which RNAs are released from chromatin, exported from the nucleus, loaded onto polysomes, and degraded within the nucleus and cytoplasm. These rates varied substantially, yet transcripts from genes with related functions or targeted by the same transcription factors and RNA binding proteins flowed across subcellular compartments with similar kinetics. Verifying these associations uncovered roles for DDX3X and PABPC4 in nuclear export. For hundreds of genes, most transcripts were degraded within the nucleus, while the remaining molecules were exported and persisted with stable lifespans. Transcripts residing on chromatin for longer had extended poly(A) tails, whereas the reverse was observed for cytoplasmic mRNAs. Finally, a machine learning model identified additional molecular features that underlie the diverse life cycles of mammalian mRNAs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3