Passive shaping of intra- and intercellular m6A dynamics via mRNA metabolism

Author:

Dierks DavidORCID,Shachar Ran,Nir Ronit,Garcia-Campos Miguel AngelORCID,Uzonyi Anna,Toth Ursula,Rossmanith Walter,Lasman Lior,Slobodin Boris,Hanna Jacob H.ORCID,Antebi Yaron,Scherz-Shouval RuthORCID,Schwartz SchragaORCID

Abstract

Abstractm6A is the most widespread mRNA modification and is primarily implicated in controlling mRNA stability. Fundamental questions pertaining to m6A are the extent to which it is dynamically modulated within cells and across stimuli, and the forces underlying such modulation. Prior work has focused on investigatingactivemechanisms governing m6A levels, such as recruitment of m6A writers or erasers leading to either ‘global’ or ‘site-specific’ modulation. Here, we propose that changes in m6A levels across subcellular compartments and biological trajectories may result frompassivechanges in gene-level mRNA metabolism. To predict the intricate interdependencies between m6A levels, mRNA localization, and mRNA decay, we establish a differential model ‘m6ADyn’ encompassing mRNA transcription, methylation, export, and m6A-dependent and independent degradation. We validate the predictions of m6ADyn in the context of intracellular m6A dynamics, where m6ADyn predicts associations between relative mRNA localization and m6A levels, which we experimentally confirm. We further explore m6ADyn predictions pertaining to changes in m6A levels upon controlled perturbations of mRNA metabolism, which we also experimentally confirm. Finally, we demonstrate the relevance of m6ADyn in the context of cellular heat stress response, where genes subjected to altered mRNA product and export also display predictable changes in m6A levels, consistent with m6ADyn predictions. Our findings establish a framework for dissecting m6A dynamics and suggest the role of passive dynamics in shaping m6A levels in mammalian systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3